\qquad

Section 16.1 and 16.2 Review

Section 16.1 Additional Exercises

1. What is the integral of the constant function $f(x, y)=7$ over the rectangle $[2,4] \times[-2,3]$?
2. Evaluate

$$
\int_{-1}^{1} \int_{0}^{\pi} x^{2} \sin y d y d x
$$

3. Evaluate

$$
\int_{0}^{1} \int_{0}^{1} y \sqrt{1+x y} d y d x
$$

Hint: Change the order of integration.
4. Let $f(x, y)=m x y^{2}$ where m is a constant. Find a value of m such that

$$
\iint_{R} f(x, y) d A=1
$$

where $R=[0,1] \times[0,2]$.

Section 16.2 Additional Exercises

1. Compute the double integral

$$
\iint_{R} x^{2} y d A
$$

where R is the region described by $1 \leq x \leq 3$, and $x \leq y \leq 2 x+1$.
2. Sketch the domain of integration. Then change the order of integration and evaluate. Explain the simplification achieved by changing the order.

$$
\int_{0}^{4} \int_{\sqrt{y}}^{2} \sqrt{x^{3}+1} d x d y
$$

3. Calculate the average height above the x-axis of a point in the region $0 \leq x \leq 1,0 \leq y \leq x^{2}$.
